



**Quantum Information Research Center** 

https://qic.ynu.ac.jp/en

## **Quantum Information Research Center (QIC)**





#### **Foundation**

October 1st, 2020

QIC was founded as a global research center within the Institute of Advanced Sciences (IAS) of Yokohama National University.

#### Vision

QIC is an environment where researchers in quantum information and related fields can gather, exchange information, create ideas on a day-to-day basis, and persistently launch high-value joint research projects. We aim to promote practical research and to build a reputation for carrying out world-class, large-scale research projects by participating as a core organization in national projects and joint international projects.

#### **Team**

The QIC Team is made up of professors/researchers of IAS and the Graduate School of Engineering of Yokohama National University. In addition, there are several visiting professors/researchers from other universities and National institutes who have joined QIC for project collaboration. The QIC team brings quantum information to the level together with the cooperation of students.



Building a circulation system for the creation of knowledge and contributing to society

## **QIC Members**

#### Management





Hideo Kosaka

Kinya Kumazawa

Industry-Academy-

Government

Collaboration

Coordinator

**Associate PM IP Strategy** Intellectual **Associate Property Producer** 

**Professor** 



Anton Myalitsin PR

International

Adjunct **Teaching** Staff



Annelies Volders



**Professor** 



**Associate** 

**Professor** 







Visiting



Professor





Masahiro Nomura



Visiting

Professor

Toshiharu Makino

*AIST* 

**Visiting** 

**Professor** 

Tokuyuki Teraji



**National Institutes** 

Visiting

**Professor** 

Hiromitsu Kato

*AIST* 

Visiting

**Professor** 

Hirotaka Terai



Visiting

Researcher

**Advisory Board** 

#### International Members

Visiting **Professor** 



Jonathan Finley



Visiting **Professor** 



Fedor Jelezko



SAARLAND UNIVERSITY

**Christoph Becher** 

will be part of the

**Japanese Universities** 

Professor

**Associate** 

**Professor** 

**Professor** 

**Associate** 

Professor





**Associate** 

**Assistant** 

**Professor** 



Assistant

**Professor** 

Avisheik





Visiting

Goundar Jowesh



**UTokyo** 

Professor

Kazuki Koshino



Visiting Associate



Shigehito Miki

Visiting

**Professor** 



Visiting Associate

**Professor** 

Shinobu Onoda



Rvo Sasaki **G**RIKEN

### Company Visiting

Professor

Kai Mueller

ТШ

Visiting

**Professor** 





Yu Mimura **FURUKAWA ELECTRIC** 





Mamiko Kujiraoka





Assistant **Professor** 



**Assistant Professor** 

Yuki Yamanashi Yoshiaki Nishijima Christopher Ayala Yuhei Sekiguchi



YNU YOKOHAMA National University



**Assistant Professor** 



**Abdul Nasir Kuzhiyan Thadathil** 



Assistant

Teruyuki Kinno







# **Project Overview**

#### **Moonshot R&D**

Goal 6 : Realization of a fault-tolerant universal quantum computer that will revolutionize economy, industry, and security by 2050

# Development of Quantum Interfaces for Building Quantum Computer Networks (QuINT)

- PM & PI: Hideo Kosaka
- FY 2020 2025
- Ministry: Cabinet Office (CAO)
- Funding Agency Goal 6: Japan Science and Technology Agency (JST)
- Project Implementation: Quantum Information Research Center

YNU | UTokyo | AIST | NIMS | QST | RIKEN | NICT | KyotoU | TMDU



#### MIC

Research and development for construction of a global quantum cryptography network

# Quantum Repeater Technology (QuREP)

- Coordinator & PI: Hideo Kosaka
- FY 2020 2024
- Ministry: Ministry of Internal Affairs and Communications (MIC)
- Project Implementation: Quantum Information Research Center

YNU | UTokyo | AIST | NIMS | NICT | Toshiba | Furukawa Electric



## **Moonshot R&D**

## Moonshot R&D

The Moonshot Research and Development Program is a large-scale national project that promotes challenging R&D projects with the aim of resolving difficult societal issues while bringing together the wisdom of researchers from all over the world. The Cabinet Office has set nine ambitious goals to be achieved by 2050, and six of them are handled by JST.





**QuINT**, proposed by Hideo Kosaka, got accepted as one of the twelve projects under **Goal 6**.

# Goal 6 (=12 Projects)

fault-tolerant universal quantum computer



2030

#### **Goal 6 Milestones**

- Development of NISQ computers of a certain scale
- Effectiveness demonstration of quantum error correction

2040

- Demonstration of distributed NISQ computers
- Calculation of useful tasks under quantum error correction

2050

• Realization of fault-tolerant universal computers

# Quantum INTerfaces



Hideo Kosaka Project Manager

2023

2025

2023

QuINT Milestones

- Realize a hybrid quantum interface by developing technologies such as optimal quantum light sources and quantum media conversion
- Hybrid quantum interface that fuses diamond quantum memory and optomechanical crystals, enabling a quantum connection between quantum memories

 $\bullet$  Build the foundation of the quantum repeater network



# Development of Quantum Interfaces for Building Quantum Computer Networks

#### **Mission**

Develop a quantum interface technology that connects:

- 1. a microwave photon to a quantum memory
- 2. a quantum memory to a communication photon
- → Integrate these two technologies to create a quantum interface technology between computing qubits and communication photons.



#### **Project Management**



Hideo Kosaka (YNU) Project Manager



Anton Myalitsin (YNU) Associate Project Manager



Kinya Kumazawa (YNU) Intellectual Property Producer

#### **① Diamond Quantum Memory**



Hideo Kosaka (YNU) Diamond Quantum Memory



Hiromitsu Kato (AIST) Diamond Quantum Structure



**Tokuyuki Teraji**(NIMS)
Diamond Quantum
Crystal



Shinobu Onoda (QST) Diamond Color Center

### ② Optomechanical Crystal



Satoshi Iwamoto (UTokyo) Photonic Crystal Cavity



Toshihiko Baba (YNU) Photonic Integrated Circuit



Masahiro Nomura (UTokyo) Phononic Crystal Cavity

#### **③ Piezo Microwave Resonator**



Hideo Kosaka (YNU) Piezo Microwave Cavity



Nobuyuki Yoshikawa (YNU) Qubit Control Integrated Circuit



Kazuki Koshino (TMDU) Quantum Interface Theory

# **R&D** for Construction of a Global Quantum Crypto Network

## Global Quantum Cryptography Network

The Ministry of Internal Affairs and Communications of Japan has set the goal of constructing a global quantum cryptography in their Quantum Technology Innovation Policy.

The development has been classified into **4 categories**.



Ministry of Internal Affairs and Communications, JAPAN



**QuREP** is placed under **category 3** and is responsible for the total scope of this category.



QuREP aims to create **longer distance quantum cryptography** and a **more secure repeating of encryption keys** in terrestrial systems when compared to that of trusted nodes.



# **Quantum Repeater Technology**

#### **Mission**

- Develop a quantum memory technology that can maintain the quantum state at the repeater point of the network for a certain period
- 2. Develop peripheral devices and new fundamental technologies, such as an allphotonic quantum repeater and wavelength-multiplexed quantum repeater



#### ① Optical Link Technology for Quantum Memory



Hideo Kosaka (YNU) Quantum Memory Quantum Repeater Technology



Hiromitsu Kato (AIST) Diamond Microfabrication



**Tokuyuki Teraji**(NIMS)
Highly-functionalized
Diamond



Satoshi Iwamoto (UTokyo) Diamond Microcavities

#### ② Quantum Repeater Fundamental Technology



Mamiko Kujiraoka (Toshiba) All-photonic Quantum Repeater



Yu Mimura (Furukawa Electric) Wavelength-multiplexed Quantum Repeater



Hideo Kosaka (YNU) Quantum Memory Photonic Interface



Shigehito Miki (NICT) Superconducting Single-photon Detection Technology

