MOONSHOT Jul. 19, 2023 @Akasaka Intercity Conference

Kosaka Project Quint Development of Quantum Interfaces for Building Quantum Computer Networks"

Hideo Kosaka

Project Manager Professor, Yokohama National University Director, Quantum Information Research Center Research fellow, The University of Tokyo Japan

1. Quantum Networks = QC&QC

2. Quantum Communication Networks

3. Quantum Computer Networks

Development Steps toward Quantum Networks

Quantum enhanced security but not absolutely secure

2. Quantum Repeater Network

Absolutely secure QKD network with multiparty connections

National Projects toward Quantum Networks

Quantum Communication Networks

https://qurep.ynu.ac.jp/

Agency

JPMI00316

Global QKD Network Program

MIC

Quantum Repeater Project

JPMI00316

Principle of Quantum Repeaters

QR = **Quantum Error Correction System**

Three schemes for Quantum Repeaters

A Color Center in Diamond

NV Center

Performance of Diamond chip in YNU scheme Emission & absorption \Rightarrow Insensitive to phase, freq. & loss balance **Geometric qubit under a zero magnetic field** \Rightarrow Robust to noise

11

Challenges for Enhanced Photon Emission

MIC Challenges for Remote Entanglement

We succeeded in transmitting a photon entangled with an NV over 10 km

Quantum Computer Networks

Moonshot Goal 6

[Moonshot Goal candidate]

Realization of fault-tolerant universal quantum computers FTQC

(Network Project)

2040

Demonstration of <u>distributed NISQ computer</u> & <u>Net QC</u> Calculation of useful tasks under quantum error correction

Development of NISQ computers of a certain scale & Effectiveness demonstration of quantum error correction

Network

Development of quantum memory, establishment quantum interface technology between photons and quantum memory, development of quantum repeater and quantum communication system, building testbed.

- Photon source & detector
- Quantum memory
- Quantum interface technology
- Quantum repeater (short distance)
- Quantum communication system

Testbed

Hardware

System design and implementation of quantum error correction, establishment of quantum bit and gate platforms.

	S Ider feasible	Stage gate ntify suitable e physical s	e & system.	
Super- conducting qubit	Trapped ions	Photonic qubits	Semi- conductor qubits	Neutral atoms
			as a possibl	le candidat

Software

Development of low overhead quantum error correction code and quantum algorithms, development of measurement and control software, development of error correction system

- Quantum error correction theory
- Middleware, compiler
- Algorithms, applications
- Error correction system

https://moonshot.ynu.ac.jp

Why we need Quantum Interface?

What is Quantum Interface?

Quantum frequency converter between microwaves (~10 GHz) & lightwaves (~500 THz)

Conventional EOM/AOM require strong pump induce noise

High-Q EO/ÃO cavities to reduce pump

Opto-Mechanical Crystal in nano-structure to further reduce pump

Conventional Opto-Mechanical Crystal

Homo-structure (AIN, LN, GaP) to hetero-structure (Si)

Issues are ...

Low efficiency < 10⁻⁴ with pump noise

Low carrier freq. < 5GHz ⇒ thermal noise

Advantage of high carrier frequncy

Diamond Opto-Mechanical Crystal

Advantages are ...

High freq. >5GHz \Rightarrow Low thermal noise

A color center mediate conversion \Rightarrow High efficiency w/o pump noise

In addition ... **High sound velocity High thermal conduc** Low thermal elasticity Low dielectric loss

(undercut)

10 µm

Diamond OMC with a Color Center

Quantum Interface = Quantum Media Converter

Quantum interface converts excitation between quantum media

Optical photon cannot be be directly converted into superconducting qubit

Not only electron but also exciton(color center), spin and phonon(mecha wave) have to be used

Diamond OMC with a Color Center

A Color Center bridges Macro & Micro Quanta

Microwave + Mechanical + Optical Resonators

Enhancement of conversion efficiency

Performance of Element Components

Estimation of Entanglement Rate

H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, Phys. Rev. Applied 18, 064039 (2022).

B. Kim, H. Kurokawa, H. Kosaka, and M. Nomura, arXiv:2305.08306 (2023).

Coherent Orbital Control of a Color Center

Require 3 orders of magnitude smaller power than spin control by B fields

M. Yamamoto, H. Kurokawa, S. Fujii, T. Makino, H. Kato, and H. Kosaka, , arXiv.2307.10271 (2023). H. Kurokawa, K. Wakamatsu, S. Nakazato, T. Makino, H. Kato, Y. Sekiguchi, and H. Kosaka, arXiv:2307.07198 (2023).

Quantum Information Research Center QIC

Management

Hideo Kosaka

IP Strategy Intellectual

Property

Producer

PR

Government

Associate PM Associate Professor

Shinichiro Fujii Kinya Kumazawa

PR Industry-Academy-International

Annelies Volders

Adjunct

Collaboration Teaching Coordinator Staff

Professor

Associate

Professor

Fumihiro Inoue

Assistant

Yuhei Sekiguchi

Hodaka Kurokawa Akira Kamimaki

Assistant

YNU YOKOHAMA National University

Japanese Universities

Associate

Professor

Associate

Professor

Assistant

Professor

Professor

Toshihiko Baba Nobuyuki Yoshikawa Yuki Yamanashi

Associate

Professor

Yoshihiro Shimazu Christopher Ayala

Visiting Visiting Professor Professor

Satoshi Iwamoto Masahiro Nomura

Visiting Associate Visiting Associate Professor Professor

Kazuki Koshino TMDU KYOTO 東京医科福利大学

Visiting Professor

Hirotaka Terai Shigehito Miki

National Institutes

Visiting Visitina Professor Professor

NATIONAL INSTITUTE OF

Visitina

Professor

Tokuvuki Teraii

Visitina

Professor

Toshiharu Makino Hiromitsu Kato **DAIST**

Visiting

Associate

Professor

Visiting

Researcher

Rvo Sasaki

RIKEN

Company

Visiting Associate

Professor

TOSHIBA

Visiting Professor

Visiting

Professor

International Members

Jonathan Finley

Visiting

Visiting Professor

Professor

Advisory Board Members

Worldwide Nanotech Researchers from 6 Univs & 5 National Institutes

We are developing diamond-based

